Microfabrication and Nanomanufacturing:

by Mark J. Jackson
2006 CRC Press
401 pages, illus.
$140 plus shipping

Available through the Abrasive Engineering Society
Buy it now or ask a question- Click here



About the Author | Table of Contents | Subject Index

MicroFabricationa and NanoManufacturing
TOPICS
Micro and nanogrinding
Grinding wheels and bond systems
New binderless wheel
Precision grinding processes
Ultraprecision grinding
Other Methods
Diamond turning
Diamond nanogrinding
Polydimethylsiloxane (PDMS)
Polymethylmethacrylate (PMMA)
X ray lithographic microfabrication
Synchrontron radiation
Etching and Reactive ion etching
High aspect ratio microstructures
Laser-based micro and nanofabrication
Lithographic processes
Material Properties and Behavior
The Size Effect in Machining
Materials Plastic Behavior
Temperature
Theories
Cutting Tools
Diamond chemical vapor deposition (CVD)
Nanocrysalline Diamond
Other Mechanical micromachining
Research Tools Scanning Electron Microscope Finite Element Analysis Atomic force microscopy
Research
Jackson studies
Robinson studies

Other details in index below.

Keywords : Applications, Processes, Future directions,Commercialization issues, Micromachining, Molds and Micromolding, Nanofabrication,Nanometric machining, Waterjet and Pulsed water drop micromachining
NOTES

Here's a book with multiple uses. Though it discusses the hot button topic of nanotechnology, it provides a good bridge between the present state-of-the-art of micromachining methods and technologies needed for the future. The book is useful for background on diamond synthesis, lasers, waterjet and other familiar,evolving technologies. The book draws most examples from the semiconductors industry, which has been the source for advances in knowledge and tools. A history of diamond synthesis provides background for discussions of thin film technologies applied to diamond tools and grinding wheels. The section on lasers shows ways to improve abrasive performance by altering the crystalline and/or bonding structures. While scaled-down versions of existing technology can be applied to some micromachining application, the unique physical properties of machining at submicron levels demand new tools and techniques. This book provides an overview of the problems and possible solutions.
THE AUTHOR
Mark Jackson is currently an Associate Professor of Mechanical Engineering Technology at Purdue University, an Faculty Associate at the Birck Nanotechnology Center and the Center for Advanced Manufacturing at Purdue University, as well as Visiting Professor at Harbin Institute of Technology, China. Dr. Jackson began his engineering career in 1983, and attained a Doctor of Philosophy (Ph. D.) degree at Liverpool in the field of materials engineering. Work experiences include positions at Unicorn Abrasivesí Central Research & Development Laboratory (Saint-Gobain Abrasivesí Group) as materials technologist, technical manager for new business development in Europe, and university liaison. In 2002, he joined the faculty at the Center for Manufacturing Research, and Center for Electric Power at Tennessee Technological University (an associated university of Oak Ridge National Laboratory), and became a faculty associate at Oak Ridge National Laboratory. In 2004 he became an Associate Professor of Mechanical Engineering at Purdue University. Dr. Jackson's work is published in more than 60 refereed journal articles and 70 refereed conference publications. Among his many publishing activities Jackson was the founding Editor-in-Chief of the International Journal of Nanomanufacturing, which was established March 2005.
TABLE OF CONTENTS

Contents
Chapter I Micro and Nanofabrication I
by Mark J. Jackson
Chapter 2 Microfabrication Using X Ray Lithography .....33
by David W. L. Tolfree and Mark J. Jackson
Chapter 3 Etching, Machining, and Molding High Aspect Ratio Microstructures .....59
by Mark J. Jackson and Grant M. Robinson
Chapter 4 The Size Effect in Micromachining .....87
by Milton C Shaw and Mark J. Jackson
Chapter 5 Mechanical Micromachining .....III
by Mark J. Jackson and Sam B. McSpadden
Chapter 6 Precision Micro and Nanogrinding .....143
by Vellore C. Venkatesh, Sudin Izman, and Mark J. Jackson
Chapter 7 CVD Diamond Technology for Microtools, NEMS, and MEMS Applications .....187
by Waqar Ahmed, Htet Sein, and Mark J. Jackson
Chapter 8 Laser Based Micro and Nanofabrication ..... 221
by Mark J. Jackson and Grant M. Robinson
Chapter 9 Pulsed Water Drop Micromachining .....249
Mark J. Jackson and Luke J. Hyde
by Chapter 10 Diamond Nanogrinding .....277
by Mark J. Jackson, Luke J. Hyde, and Grant M. Robinson
Chapter 11 Nanometric Machining: Theory, Methods, and Implementation .....311
by Kai Cheng, Xun Luo, and Mark J. Jackson
Chapter 12 Nanocrystalline Diamond: Deposition Routes and Applications .....339
by Nasar Ali, Juan Gracio, Mark J Jackson, and Waqar Ahmed
Chapter 13 Commercialization Issues of Micro Nano Technology .....359 by David W. L Totfree
Chapter 14 The Future of Micro and Nanomanufacturing 367
by Mark J. Jackson
Index .....389

SUBJECT INDEX
A
Abbe's principle, 328
Abrasive materials, 148 150, 149
Absolute machining threshold velocity (AMTV), 253 254, 261 262
Addition phase, 3 4
Adsorption, active species, 188
AFM, see Atomic force microscopy (AFM)
Ahmed studies, 187 218, 339 354
Airoldi studies, 351
AISI steel, 102, 115
Alexander and Klug studies, 296
Alignment, x ray mask to substrate, 45, 45 46
Ali studies, 339 354
Alumina, 149, 261, 261
Aluminum oxide, 149
AM AFM, nanofabrication, 21
Amaratunga studies, 342
American Society of Precision Engineers, 89
AMTV, see Absolute machining threshold velocity
(AMTV)
Angus studies, 191
Anisotropic etching, 6
ANSYS software, 265, 270
Apparatus
    diamond nanogrinding, 285, 286
    mechanical micromachining, 121, 122
Applications
    micromolding, 82
    nanocrystalline diamond, 349 353
    nanometric machining, 312 314, 313 314
Archimedes' law, 299
Argonne National Laboratory, 342
Argon studies, 104
Armchair nanotubes, 27
Ashfold studies, 190
Aspheric surface generation, 166 169, 167 170
Astigmatic focusing error, 167
Atomic force microscopy (AFM)
    carbon nanornaterials, 27 29
    laser nanofabrication, 245
    lithographically induced self assembly, 381
    machining, 373
    nanofabrication, 18 19, 20, 21 22
    surface texture measurement, 331
Axsun, LIGA services, 34

B
Bacher studies, 35
Backer studies, 88 89
Bagchi, Zhang and, studies, 104
Barrett studies, 95
Beam characteristics, 225 226, 226 227
BEG, see Bias enhanced growth (BEG)
Belak studies, 314
BEN, see Bias enhanced nucleation (BEN)
Bernoulli pressure, 251
Berry studies, 257
Beryillium, mask materials, 42
Bias enhanced growth (BEG), 343
Bias enhanced nucleation (BEN)
    CVD diamond technology, 197, 202 204, 203
    deposition routes, 343
Binderless wheels, 177 178, 179 180
BioMEMS devices, 112
Bi studies, 342
Blades, mechanical micromachining, 131, 132 134, 133
Blake, Scattergood and, studies, 146
Blazynski and Cole studies, 96
Bonding bridges, 292 296, 293 295
Bonding systems, 296 304, 297 305
Bond materials, 148
Boothroyd studies, 153
Borges studies, 351
Bottling, high aspect ratio microstructures, 69 70, 70
Bottom up manufacturing, 278, 367
Bound air, 189
Boundary conditions, mechanical micromachining, 128
Boundary region, high aspect ratio microstructures, 62
Bowden and Tabor studies, 115
Bowing, high aspect ratio microstructures, 69, 70
Brace, Dulaney and, studies, 257
Bragg, William Henry, 189
Bragg, William Lawrence, 189
Branebjerg, Jensen, Gravesen and, studies, 112
Bridgman studies, 95 96, 98 99, 101, 105 107
Brittle to ductile transition, 322
Broberg studies, 257

C
Cabral, G., 354
CAME, see Chemical assisted ion beam etching (CAIBE)
CAMD, see Center for Advanced Microstructures and
Devices (CAMD)
Cancellous bone, 123 124
Carbon nanomaterials, 25, 27 29, 27 31
Carbon nanotubes, see Carbon nanomaterials
Carnegie Mellon University, 98
Casting, 368 369, 369 370
Catledge and Vohra studies, 342
Cavendish Laboratory, 385
Center for Advanced Microstructures and Devices
(CAMD), 34, 56 57
Centerless grinding operations, 157 158
Center of Optics Manufacturing, 335
Central Microstructure Facility, 34
Cerrina studies, 35
CFD, see Computational fluid dynamics (CFD) approach
CFX software, 125 127, 130
Chauhan studies, 191
Chemical assisted ion beam etching (CAIBE), 61
Chemical vapor deposition (CVD) diamond technology
    advantages/disadvantages, 195
    basics, v, 188 189, 218
    bias enhanced nucleation, 202 204, 203
    DC plasma enhanced CVD, 194
    dental bur, 209 210, 211 213, 214 215, 216 218, 217
    filament assembly modification, 199, 199 200
    heteroepitaxial growth, 202
    historical developments, 189 192
    hornoepitaxial growth, 202
    hot filament CVD, 194 195, 195
    machining, 374
    mask materials, 42
    materials, substrates, 196, 196
    metallic (Mo) wires, 206 207, 207
    metastable diamond growth, 191 192
    microdrills, 207 209, 208 211, 213, 214 215
    microwave plasma enhanced CVD, 194
    modified hot filament CVD, 199 200
    Mo/Si substrate, 197
    nanocrystalline diamond, 340
    nucleation and growth, diamond, 201, 201 205
    performance studies, 210 211, 213 217, 214
    plasma enhanced CVD, 193
    pretreatment, substrates, 196 197
    process conditions, 200, 200
    process types, 193 195
    properties, diamond, 189, 189
    RF plasma enhanced CVD, 193 194
    Si/Mo substrate, 197
    substrates, 196 198
    synthesis, diamond, 189 191
    technology development, 192 193, 193
    temperature influence, 204 205, 204 206
    three dimensional substrates, 206 210
    time modulated CVD, 344 348
    WC Co, 197 198, 198 199, 207 210, 208 213
Cheng, Lee and, studies, 322
Cheng studies, 311 335, 344
Chen studies, 350
Chip formation
    mechanical micromachining, 121 124, 123 124
    nanometric machining, 318 319, 319
Chiral nanotubes, 27
Chirped pulse amplification (CPA), 225
Chou studies, 381
Chromatic aberrations, 168
Circumferential damage, 252, 252 253
CIRP, see International Institute for Production Engineering
Research (CIRP)
Clays and clay based fluxes, 291
Closed form solution model, 265 266
Closed loop structural configuration, 325
CNC, see Computer Numerically Controlled (CNQ
machines)
Coanda. effect, 112
COC, see Cyclo olefin copolymer (COC)
Cohen, Langford and, studies, 96, 98, 106
Cohen studies, 105, 107 108
Cole, Blazynski and, studies, 96
Coma, 168
Commercialization issues
    basics, vi, 359 360
    infrastructure, 361 362
    manufacturing centers, 363 365
    markets, 365
    product manufacture, 363
    product market interface, 360 361, 361
    supply chain networks, 362, 362 363
Complex molds, nanometric machining, 334, 335
Computational fluid dynamics (CFD) approach, 125 128,
127 128
Computer controlled amplifiers, 327
Computer Numerically Controlled (CNQ machines, 79,
COMS2004 conference, 34
Concentration, grinding wheels, 151
Conducting layers, 2
Constant height mode, 17
Continuity equation, 128
Contour Fine Tooling, 329
Control, nanometric machining, 328
Conventional grinding, 156 160
Conventional machining comparison, 323, 324
Cook, Khandelwal and, studies, 297
Coulomb forces, 63
CPA, see Chirped pulse amplification (CPA)
Cranfield Unit for Precision Engineering (CUPE),
177
Creep feed grinding, 160
Critical depth, cuts, 159, 162, 163, 322
Cropping operations, 159
Cubic boron nitride, 149, 160
CUPE, see Cranfield Unit for Precision Engineering
(CUPE)
Cut off grinding wheels, 159 160
Cut off operations, 159
Cutting edge radius, 321, 321 322
Cutting force and energy, 314 316, 315 317
Cutting temperature, 316 318, 318
Cutting tools, 328 329, 330
Cyclo olefin copolymer (COC), 74
Cylindrical grinding operations, 157 158
Czochralski process, 7

D
Damping properties, 325
Daresbury synchrotron source, 34, 38
DC plasma enhanced CVD, 194
Decomposition, adsorbed species, 188
Deep reactive ion etching (DRIE), 54 55, see also Reactive
ion etching (RIE)
Deep x ray lithography (DXRL), 35
De la Tour, C.C., 190
Dental burs
    CVD diamond technology, 209 210, 211 213, 214 215,
216 218,217
    nanocrystalline diamond, 350 351, 351
Deposited doses, 53, 53
Deposition routes, 342 344
Deryagin studies, 191
Design
    grinding wheels, 152 153, 152 154, 155
    micromolds, 82
    water based machine tools, 264, 264
Deterministic mechanical nanometric machining, 312
DeVor and Ni, Ehmann studies, 124
Diamond, abrasive properties, 149 150
Diamond nanogrinding, see also Micro and nanogrinding
    apparatus, 285, 286
    basics, v, 278
    bonding bridges and systems, 292 305, 293 304
    dissolution models, 292 293, 293 294, 297 304,
299 305
    fracture dominated wear model, 283, 285
    fusible bonding systems, 302 304, 303 305
    future directions, 307 308
    Jackson and Mills' model, 302, 304
    Jander's model, 301, 303
    Krause and Keetman's model, 301, 304
    laser dressing, nanogrinding tools, 305 307, 306 309
    loaded nanogrinding grains, 279, 280, 281 284,
281 284,282 283
    Monshi's model, 302, 304
    nanogrinding, 285 291
    nanogrinding wheels, 294 295, 294 296
    nomenclature, 309 310
    piezoelectric nanogrinding, 278 279, 279
    porous nanogrinding tools, 291 292, 291 297
    procedure, 285 286, 286 287
    quartz, 292 293, 293 294, 297 304, 299 305
    refractory bonding systems, 297 302, 299 302
    stress analysis, 279, 281 284, 288 290, 288 291
    x ray diffraction, 296 297, 297 298
Diamond technology, CVD
    advantages/disadvantages, 195
    basics, v, 188 189, 218
    bias enhanced nucleation, 202 204, 203
    DC plasma enhanced CVD, 194
    dental bur, 209 210, 211 213, 214 215, 216 218, 217
    filament assembly modification, 199, 199 200
    heteroepitaxial growth, 202
    historical developments, 189 192
    homoepitaxial growth, 202
    hot filament CVD, 194 195, 195
    materials, substrates, 196, 196
    metallic (Mo) wires, 206 207, 207
    metastable diamond growth, 191 192
    microdrills, 207 209, 208 211, 213, 214 215
    microwave plasma enhanced CVD, 194
    modified hot filament CVD, 199 200
    Mo/Si substrate, 197
    nucleation and growth, diamond, 201, 201 205
    performance studies, 210 211, 213 217, 214
    plasma enhanced CVD, 193
    pretreatment, substrates, 196 197
    process conditions, 200, 200
    process types, 193 195
    properties, diamond, 189, 189
    RF plasma enhanced CVD, 193 194
    Si/Mo substrate, 197
    substrates, 196 198
    synthesis, diamond, 189 191
    technology development, 192 193, 193
    temperature influence, 204 205, 204 206
    three dimensional substrates, 206 210
    WC Co, 197 198, 198 199, 207 210, 208 213
Dicing operations, 159
Dinesh studies, 108 109
Diode lasers, 224 225
Dion studies, 350
Dip pens, 23, 26, 385, 385 387
Dirac delta function, 266
Direct current (DQ plasma enhanced CVD, 194
Displacement, nanometric machining, 331
Disruption mechanisms, etching, 68
Dissolution models, 292 293, 293 294, 297 304, 299 305
Divergence, 37
Double disk grinding, 160
Dow studies, 316
Doyle, Home and Tabor studies, 118
DRIE, see Deep reactive ion etching (DRIE)
Drives, nanometric machining, 327, 327 328
Drucker studies, 107
Dry etching, 60
Ductile regime, 146
Dulaney and Brace studies, 257
DXRL, see Deep x ray lithography (DXRL)
Dynamic stress intensity factor, 257 258

E
EDM, see Electric discharge machining (EDM)
Ehmann, DeVor and Ni studies, 124
Elastic structural loop minimization, 325
Electric discharge machining (EDM), 80
Electrolytic in process dressing (ELID)
cuttingtools, 329
    micro and nanogrinding, 162 164, 164
    ultraprecision surface grinding, 146
Electromagnetic compatibility (EMC) standards, 363
Electromagnetic interfacing (EMI) standards, 363
Electron beam emittance, 37
Electroplating, 367 368, 368
Electrostatic forces, 19
ELID, see Electrolytic in process dressing (ELID)
EMC, see Electromagnetic compatibility (EMC) standards
EMI, see Electromagnetic interfacing (EMI) standards
Energy equation, 129
Equation of state, 129 130
Ernst and Merchant studies, 91
Etching
    basics, 62 63
    bottling, 69 70, 70
    bowing, 69, 70
    disruption mechanisms, 68
    effects, 68 73
    inhibitor depletion, 63
    ions, 71, 71 72
    micrograss, 72 73, 73
    radical depletion, 63, 72, 72
    reflection, 72, 72
    RIE, 71 72, 71 73
    TADTOP, 70 71, 71
    tilting, 68 69, 69
    trenches, 63
    volume transport, 63 64, 64 67, 66 67
Eugene studies, 101
Eversole, W.G., 190
Eversole studies, 191
Excimer lasers, 225
Experimental approaches
    mechanical micromachining, 121 124
    pulsed water drop micromachining, 266 273
Exposure, x ray lithographic microfabrication,
51 52
Eyring studies, 101 102

F
Fan, Q.H., 354
Fanue, 323, 335
Far point, 167
Fast axial flow lasers, 224
Fast Tool Servo (FTS) system, 327
FEA, see Finite element analysis (FEA) model
FEM codes and calculations, 82
Fermosecond laser pulses, 229
Fetntosecond pulse microfabrication, 240 243,
242 244
Field, Jackson and, studies, 253
Field and Townsend, Hand and, studies, 262
Field effect transistors (FETs)
    microfabrication, 7 10
    nanofabrication, 13, 15, 15 16, 17
Filament assembly modification, 199, 199 200
Fillet surfaces, 130 131, 131 132
Film formation, 188
Finite element analysis (FEA) model, 264
Finite element model, 265, 265
Five axis CNC jig grinders, 169
Five axis CNC machining centers, 169, 323
Flow topology, 136, 136 137, 138
Fluid flow analysis, 127
Fluid like flow, 101, 101 102
Fluid models, 128
FM AFM, 21 22
Form measurement, 331
Fourier transform, 256
Fracture dominated wear model, 283, 285
Free form optics, 180 181, 181
Freeman studies, 192
Frequency response function (FRF), 264, 266 268
Fresnal number, 224, 228
Freund studies, 257
FRF, see Frequency response function (FRF)
Friend, Sir Richard, 385
FTS, see Fast Tool Servo (FTS) system
The Fundamentals of Microfabrication, 34
Fusible bonding systems, 295, 302 304, 303 305
Fusion bonding, 5
Future directions
    basics, vi, 367
    casting, 368 369, 369 370
    diamond nanogrinding, 307 308
    dip pen nanomanufacturing, 385, 385 387
    electroplating, 367 368, 368
    lithographically induced self assembly, 381, 384,
384
    machining, 372 374, 375
    mechanical micromachining, 141
    micromanufacturing, 367 375
    molding, 369 372, 371 375, 376 378, 379 382
    nanoirnprint lithography, 379 381, 383
    nanomanufacturing, 376 385
    semiconductor manufacturing, 376
    soft lithographic manufacturing, 376, 377 378
    x ray lithographic microfabrication, 56 57

G
Gaussian distribution, 37
Geometry model, CFD, 127 128, 127 128
Giant Magnetoresistance (GMR) structures, 312
Giessibl studies, 21
Gilbert studies, 144
GMR, see Giant Magnetoresistance (GMR) structures
Goettert studies, 34
Gogotski studies, 343
Governing equations, 128 129
Gracio studies, 339 354
Grades, grinding wheels, 150 151
Gravensen, Branebjerg and Jensen studies, 112
Grier studies, 246
Griffith's criterion, 288 289
Grinding wheels
    abrasive materials, 148 150, 149
    bond materials, 148
    concentration, 151
    design, 152 153, 152 154, 155
    grades, 150 151
    grit size, 150, 150
    micro and nanogrinding, 147 155, 148
    mounted wheels, 155, 155
    selection, 152 153, 152 154, 155
    structure, 151, 151
Grit size, grinding wheels, 150, 150
Groove techniques, 326
Growth, diamond, 201, 201 205
Guckel studies, 35
Guo studies, 381

H
Hafniurn oxide, 8
Hagan, Swain and, studies, 256
Hagen Poiseuille pressure drop effects, 112
Hand, Field and Townsend studies, 262
Hand studies, 262
Hanney, J.B., 190
Hard turning, 100
HARMST conference, 34
Hartranft and Sib studies, 254
Hashish and Hilleke studies, 249
HAZ, see Heat affected zone (HAZ)
Heart valves, 349, 349 350
Heat affected zone (HAZ), 229 230
Heat deformation minimization, 325
Heidenreich and Shockley studies, 90
HEMA, see Hydroxyethylmethacrylate (HEMA)
Heteroepitaxial growth, 202
HFCVD, see Hot filament CVD (HFCVD)
High aspect ratio microlithography, 46, 46 47, 48
High aspect ratio microstructures
    applications, 82
    basics, v, 60, 82 83
    bottling, 69 70, 70
    boundary region, 62
    bowing, 69, 70
    design, 82
    disruption mechanisms, etching, 68
    dry etching, 60
    etching, 62 73
    hot embossing, 75 77, 78 81
    inhibitor depletion, trenches, 63
    injection compression molding, 77
    injection molding, 74 75, 75 77
    ion beam assisted radical etching, 61
    ions, 71, 71 72
    limitations, 82
    machining, 73 74
    micrograss, 72 73, 73
    micromachining, 73 74
    micromolding, 74, 74 77, 79 82, 81
    plasma characteristics, 61 62
    plasma etching processes, 60 61
    radical depletion, 63, 72, 72
    reaction injection molding, 75
    reflection, 72, 72
    RIE lag, 71 72, 72
    sheath region, 61 62
    TADTOP, 70 71, 71
    tilting, 68 69, 69
    tools, micromolding, 79 81, 81
    trenches, 63
    volume transport, 63 64, 64 67, 66 67
High speed, multi axis CNC controllers, 328
High speed air turbines, 126, 126 130, 139 140
High speed rotors
    blades, 131, 132 134, 133
    fillet surfaces, 130 131, 131 132
    flow topology, 136, 136 137, 138
    high speed rotors design, 130 139
    housing, 133, 134
    inlets, 133, 134 135, 135, 137, 138
    pressure coefficients, 138 139, 139
    pressure variation, 137, 137
    tip angles, 131, 132 133, 133
    twelve blades, 133, 134
    two stage rotors, 135 137, 135 137
High structural loop stiffness, 325
Hilleke, Hashish and, studies, 249
Hip prothesis, 351 352
Hirari studies, 343
Historical developments, CVD diamond technology,
189 192
Hole theory of fluid flow, 102
Homoepitaxial growth, 202
Home, Tabor, Doyle and, studies, 118
Hot embossing, 75 77, 78 81
Hot filament CVD (HFCVD)
    CVD diamond technology, 194 195, 195
    time modulated CVD, 346 349
Housing, mechanical micromachining, 133, 134
Hruby studies, 34
Hyde, Jackson and, studies, 177
Hyde studies, 249 274, 277 309
Hydroxyethylmethacrylate (HEMA), 51

I
IADF, see Ion angular distribution function (IADF)
IBARE, see Ion beam assisted radical etching
(IBARE)
IBE, see Ion beam etching (IBE)
IBM, see International Business Machines (BM)
IC chip manufacturing, 156, 158 161, 160 161
IEDF, see Ion energy distribution function (IEDF)
Ikawa studies, 314
Implementation, nanometric machining, 323 335
Infrastructure, commercialization issues, 361 362
Inhibitor depletion, trenches, 63
Inhornogeneous strain, 90 91, 107 108, 108
Initial chip curl modeling, 117 121, 118 119
Injection compression molding, 77
Injection molding, 74 75, 75 77
Ink jet printers, 360, 385
Inlets, mechanical micromachining, 133, 134 135, 135,
137, 138
Inman studies, 266
Inspection systems, nanometric machining, 328,
329
Institut fur Mikrostrukturtechnik (FZK) Karlsruhe and
Antwenderzentrum BESSY, 34
Internal grinding operations, 158
International Business Machines (BM), 35
International Institute for Production Engineering
Research (CIRP), 101
International Mezzo, LIGA services, 34
Inverse Bremsstrahlung effect, 231
Ion angular distribution function (IADF), 62, 67
Ion beam assisted radical etching (IBARE), 61, 63
Ion beam etching (IBE), 61
Ion energy distribution function (IEDF), 62
Ions, high aspect ratio microstructures, 71, 71 72
Isolation environmental effects, 325
lzman studies, 143 181

J
Jabro Tools, 329
Jackson and Field studies, 253
Jackson and Hyde studies, 177
Jackson and Mills' model, 294 295, 301 304, 308
Jackson's model, 177, 178
Jackson studies<br>     CVD diamond technology, 187 218
    diamond nanogrinding, 277 309
    future trends, 359 365
    high aspect ratio microstructures, 33 57
    laser based micro and nanofabrication, 221 247
    mechanical micromachining, I I 1 141
    micro and nanofabrication, 1 31
    nanocrystalline diamond, 339 354
    nanometric machining, 311 335
    precision micro and nanogrinding, 143 181
    pulsed water drop micromachining, 249 274
    size effect, 87 109
    x ray lithography, 33 57
Jacks studies, 125
Jander's model, 299, 301 304
Jensen and Branebjerg, Gravesen studies, 112
Jiang studies, 342
Jig grinding, 156, 158 161, 160 161
Jones studies, 350

K
Kamiya studies, 204
Kapoor and Venkatesh studies, 168
Kapoor studies, 169
Kapton preabsorber filters, 43
Kececioglu's models, 102 104, 103 104
Keeccioglu studies, 102 103
Keetman, Krause and, studies, 300, 302, 304
Khandelwal and Cook studies, 297
Kirchoff studies, 294
Klug, Alexander and, studies, 296
Knudsen number, 63
Kolsky studies, 255
Komanduri studies, 314
Konig and Sinhoff studies, 166
Konov studies, 342
Kousar, Y, 354
Krause and Keetman's model, 300 302, 304
Kugler, 323
Kumar studies, 344

L
Labcard, 370
Lab on a chip
    mechanical micromachining, 112
    molding, 370
    piezoelectric nanogrinding process, 287
Lander and Morrison studies, 191
Langford and Cohen's model, 96, 97 98, 98
Langford and Cohen studies, 106
Langford studies, 96, 105, 107 108
Large Optics Diamond Turning Machine (LODTM), 323,
333
Large plastic flow, 99, 105 107
Laser based micro and nanofabrication
    basics, v, 221, 246 247
    beam characteristics, 225 226, 226 227
    diode lasers, 224 225
    excimer lasers, 225
    fennosecond pulse microfabrication, 240 243,
242 244
    lasers, 222 225
    material interactions, 228 230, 229 230
    microfabrication, 231 243
    monochromatic light creation, 222 223, 222 223
    nanofabrication, 244 246, 245 246
    nanosecond pulse microfabrication, 231 233, 233 234
    optics, 227 230
    picosecond pulse microfabrication, 233 236, 235 240,
239 240
    quality, optical, 228, 228 229
    shielding gas, 231 232, 232
    stimulated emission, 223 224
    surface melting stages, 232
    Ti:sapphire lasers, 225
Laser dressing, nanogrinding tools, 305 307, 306 309
Lateral jetting, 253, 253
Lavoisier, Antoine, 189
Lee and Cheng studies, 322
LEED, see Low energy electron diffraction (LEED) study
Lee studies, 343
Leng studies, 350
Lens aberration, 167
LIGA process, 34, 38, 39, 40
Limitations, micromolding, 82
Lindburg studies, 161
Lin studies, 342
LISA, 384
Lithographically induced self assembly, 381, 384, 384
Lithographic method, 312
Lithographic processes, see also X ray lithographic
    microfabrication
    microfabrication, 10 11
    minute structures, 80 81
    x ray lithographic microfabrication, 40
Loaded nanogrinding grains, 279, 280, 281 284,
282 283
LODTM, see Large Optics Diamond Turning Machine
(LODTM)
Loladze studies, 289
Loop stiffness, high structural, 325
Loose abrasive nanometric machining, 312
Lorentz forces, 63
Low energy electron diffraction (LEED) study, 191
Low temperature isotropic carbon (LTIC), 350
LTIC, see Low temperature isotropic carbon (LTIQ
Lundin studies, 297 298, 301 302
Luo studies, 311 335

M
Machining, see also High aspect ratio microstructures
    future directions, 372 374, 375
    high aspect ratio microstructures, 73 74
Machining process variables, 332, 332
Machining thresholds, modeling, 252 253, 253 259
Machining threshold velocity (MTV), 252 253, 261
Madou studies, 34
Magnesium fluoride, 261 262, 262
MANCEF, see Micro and Nanotechnology
Commercialisation Educational Foundation
(MANCEF)
Manipulative techniques, nanofabrication, 16 19, 17 26,
21 23
Manufacturing centers, commercialization issues, 363 365
Marangoni forces, 232
Markets, commercialization issues, 365
Marks studies, 35
Masks, materials, 42 44, 42 44
Master micromold fabrication, 54 56, 55
Materials
    interactions, 228 230, 229 230
    masks, 42 44, 42 44
    removal rates, 262, 263, 264
    substrates, CVD diamond technology, 196, 196
Mc Keown studies, 177
McSpadden studies, 111 141
MD, see Molecular dynamics (MD) simulation
Mechanical micromachining
    apparatus, 121, 122
    basics, v, 112, 139 141
    blades, 131, 132 134, 133
    boundary conditions, 128
    CFD approach, 127 128, 127 128
    chip formation observation, 121 124, 123 124
    experimental, 121 124
    fillet surfaces, 130 131, 131 132
    flow topology, 136, 136 137, 138
    fluid flow analysis, 127
    fluid models, 128
    future developments, 141
    geometry model, CFD, 127 128, 127 128
    governing equations, 128 129
    high speed air turbine spindles, 126, 126 130
    high speed rotors design, 130 139
    housing, 133, 134
    initial chip curl modeling, 117 121, 118 119
    inlets, 133, 134 135, 135, 137, 138
    microfluidic systems, 112 113, 113 114
    micromilling, 114 117
    pressure, 137, 137 139, 139
    results, 124
    theory, 114 121
    tip angles, 131, 132 133, 133
    tool design, 122, 124 126, 125 126
    twelve blades, 133, 134
    two stage rotors, 135 137, 135 137
Mechanical structure, nanometric machining, 324 327, 326
Medical market, 361 362
MEMO, see Methacryloxypropyl trimethoxy silane
(MEMO)
Merchant, Ernst and, studies, 91
Merchant and Zlatin studies, 115 116, 140
Merchant studies, 88, 92 93, 95, 101, 107 108, 144
Me Scope software, 268, 270 271
Meso machine tools (mMTs)
    machining, 375
    pulsed water drop micromachining, 250, 273
    tool design, 124 125
Metal cutting chip formation, 101, 101 102
Metallic (Mo) wires, 206 207, 207
Metals, 148
Metastable diamond growth, 191 192
Methacryloxypropyl trimethoxy silane (MEMO), 51
Metrology, nanometric machining, 328, 329
Michler studies, 342
Micro and nanogrinding, see also Diamond nanogrinding
    abrasive materials, 148 150, 149
    aspheric surface generation, 166 169, 167 170
    basics, v, 143 144, 144 145, 146 147, 147, 181
    binderless wheels, 177 178, 179 180
    bond materials, 148
    concentration, 151
    conventional grinding, 156 157, 156 160
    critical depth, cuts, 159, 162, 163
    design, grinding wheels, 152 153, 152 154, 155
    electrolytic in process dressing, 162 164, 164
    free form optics, 180 181, 181
    grades, grinding wheels, 150 151
    grinding wheel, 147 155, 148
    grit size, 150, 150
    IC chip manufacturing, 156, 158 161, 160 161
    Jackson's model, 177, 178
    jig grinding, 156, 158 161, 160 161
    mounted wheels, 155, 155
    partial ductile mode grinding, 164 166, 165 166
    polishing time reduction, 164 166, 165 166
    precision grinding process, 160 169
    selection, grinding wheels, 152 153, 152 154, 155
    structure, grinding wheels, 151, 151
    technology advancements, 171 175, 171 177
    tetrahedral desktop machine tool, 177, 178
    ultraprecision grinding, 171 181
Micro and Nanotechnology Commercialisation
Educational Foundation (MANCEF), 365
Microcrystalline diamond (MCD) films, 341
Microdrills, 207 209, 208 211, 213, 214 215
Microfabrication, 1 8, 3 12, 10 11, 31,
    see also Laser based micro and nanofabrication
Microfabrication, x ray lithography
    basics, v, 34 35
    deposited dose, 53, 53
    exposure, 51 52
    future directions, 56 57
    high aspect ratio micro] ithography, 46, 46 47, 48
    LIGA process, 38, 39, 40
    lithography steps, 40
    master micromold fabrication, 54 56, 55
    materials, masks, 42 44, 42 44
    PMMA, 50 51
    process, 38 56
    resists, 47, 49 50, 49 51
    single layer absorber fabrication, 44 45
    slanted and stepped microstructures, 53 54, 54
    substrates, 45, 45 47
    synchrontron radiation, 35 38, 36
    x ray lithography, 35, 40
    x ray masks, 40, 41, 42, 45, 45 46
Microfluidic devices, 352 353, 353
Microfluidic systems, 112 113, 113 114
Micrograss, 72 73, 73
Micromachining, 73 74, see also Pulsed water drop
micromachining
Micromachining, mechanical
    apparatus, 121, 122
    basics, v, 112, 139 141
    blades, 131, 132 134, 133
    boundary conditions, 128
    CFD approach, 127 128, 127 128
    chip formation observation, 121 124, 123 124
    experimental, 121 124
    fillet surfaces, 130 131, 131 132
    flow topology, 136, 136 137, 138
    fluid flow analysis, 127
    fluid models, 128
    future developments, 141
    geometry model, CFD, 127 128, 127 128
    governing equations, 128 129
    high speed air turbine spindles, 126, 126 130
    high speed rotors design, 130 139
    housing, 133, 134
    initial chip curl modeling, 117 121, 118 119
    inlets, 133, 134 135, 135, 137, 138
    microfluidic systems, 112 113, 113 114
    micromilling, 114 117
    pressure coefficients, 138 139, 139
    pressure variation, 137, 137
    results, 124
    theory, 114 121
    tip angles, 131, 132 133, 133
    tool design, 122, 124 126, 125 126
    twelve blades, 133, 134
    two stage rotors, 135 137, 135 137
Micromachining, size effect
    basics, v, 87 88
    fluid like flow, 101, 101 102
    hard turning, 100
    inhomogeneous strain, 90 91, 107 108, 108
    Kececioglu's models, 102 104, 103 104
    Langford and Cohen's model, 96, 97 98, 98
    large plastic flow, 99, 105 107
    metal cutting chip formation, 101, 101 102
    plastic behavior, large strain, 95 104, 96
    saw tooth chip formation, 100
    shear angle prediction, 91 95, 91 95
    size effects, 88 91, 88 91, 108 109
    Usui's model, 100, 100 101
    Walker and Shaw's model, 96 97, 98 100, 99
    Zhang and Bagcbi's model, 104, 105 106
Micromanufacturing, 367 375
MICROMASTER MM, 323
Micromilling, 114 117
Micromolding
    applications, 82
    design, 82
    hot embossing, 75 77, 78 81
    injection compression molding, 77
    injection molding, 74 77, 75 77
    limitations, 82
    reaction injection molding, 75
    tools, 79 81, 81
Micromolding in capillaries (MIMIC), 377
Micro nanotechnology (MNT), 35, see also
Commercialization issues
Microwave plasma CVD (MPCVD), 193 194, 346 349
Mills, Jackson and, studies, 294 295, 301 304, 308
MIMIC, see Micromolding in capillaries (MIMIC)
Minimum undeformed chip thickness, 320, 320 321
Modeling, see also Simulation
    closed form solution model, 265 266
    dissolution models, 292 293, 293 294, 297 304,
299 305
    finite element analysis (FEA) model, 264
    finite element model, 265, 265
    fluid models, 128
    fracture dominated wear model, 283, 285
    geometry model, 127 128, 127 128
    geometry model, CID, 127 128, 127 128
    initial chip curl modeling, H 7 121, 118 119
    Jackson and Mills' model, 294 295, 301 304, 308
    Jackson's model, 177, 178
    Jander's model, 299, 301 304
    Kececioglu's models, 102 104, 103 104
    Krause and Keetman's model, 300 302, 304
    Langford and Cohen's model, 96, 97 98, 98
    machining thresholds, 252 253, 253 259
    machining thresholds, modeling, 252 253,
253 259
    rnodeling,252 253,253 259
    Monshi's model, 300, 302, 304
    pulsed water drop micromachining, 252 253,
253 259
    Usui's model, 100, 100 101
    Walker and Shaw's model, 96 97, 98 100, 99
    Zhang and Bagchi's model, 104, 105 106
Mode shapes, tetrahedral structures, 266 273
Modified hot filament CVD, 199 200
Mohr effect, 94
Moisson, H., 190
Molding, 369 372, 371 375, 376 378, 379 382, see also
High aspect ratio microstructures
Molecular dynamics (MD) simulation, 318 322
Momentum equation, 129
Monochromatic light creation, 222 223, 222 223
Monshi's model, 300, 302, 304
Moore Nanotechnology Systems, 172, 175, 323
Moriwaki, Schulz and, studies, 171
Moriwaki studies, 314
Morrison, Lander and, studies, 191
Mo/Si substrate, 197
Mounted wheels, 155, 155
MPCVD, see Microwave plasma CVD (MPCVD)
MTV, see Machining threshold velocity (MTV)
Multi axis CNC controllers, high speed, 328
Multiple spin coats, resist application, 50
Multiplication phase, 4
Multi wall carbon nanotubes (MWCNTs), 27, 343
Murakami, Suzuki and, studies, 177

N
Nachi Fujikoshi, 172
Nakagawa, Ohmod and, studies, 162
Namba studies, 175
Nano and microgrinding, see also Diamond
nanogrinding
    abrasive materials, 148 150, 149
    aspheric surface generation, 166 169, 167 170
    basics, v, 143 144, 144 145, 146 147, 147, 181
    binderless wheels, 177 178, 179 180
    bond materials, 148
    concentration, 151
    conventional grinding, 156 157, 156 160
    critical depth, cuts, 159, 162, 163
    design, grinding wheels, 152 153, 152 154, 155
    electrolytic in process dressing, 162 164, 164
    free form optics, 180 181, 181
    grades, grinding wheels, 150 151
    grinding wheels, 147 155, 148
    grit size, 150, 150
    IC chip manufacturing, 156, 158 161, 160 161
    Jackson's model, 177, 178
    jig grinding, 156, 158 161, 160 161
    mounted wheels, 155, 155
    partial ductile mode grinding, 164 166, 165 166
    polishing time reduction, 164 166, 165 166
    precision grinding process, 160 169
    selection, grinding wheels, 152 153, 152 154, 155
    structure, grinding wheels, 151, 151
    technology advancements, 171 175, 171 177
    tetrahedral desktop machine tool, 177, 178
    ultraprecision grinding, 171 181
Nanocentre, 177
Nanocrystalline diamond
    applications, 349 353
    basics, 339 341, 340, 353 354
    dental burs, 350 351, 351
    deposition routes, 342 344
    heart valves, 349, 349 350
    hip prothesis, 351 352
    microfluidic devices, 352 353, 353
    nano properties, 341
    time modulated CVD, 344 348, 344 349
Nanocrystalline diamond (NCD) films, 341
Nanofabrication, see also Laser based micro and
nanofabrication
    basics, v, 1 2, 13 31
    carbon nanomaterials, 25, 27 29, 27 31
    manipulative techniques, 16 19, 17 26, 21 23
    soft lithography, 13, 13 17, 15 16
Nanogrinding, 334, 335, see also Diamond nanogrinding;
Micro and nanogrinding
Nanogrinding wheels, 294 295, 294 296
Nanoimprint lithography, 379 381, 383
Nanomanufacturing, 376 385
Nanometric machining
    applications, 312 314, 313 314
    basics, v, 312, 335
    chip formation, 318 319, 319
    complex molds, 334, 335
    control, 328
    conventional machining comparison, 323, 324
    cutting edge radius, 321, 321 322
    cutting force and energy, 314 316, 315 317
    cutting temperature, 316 318, 318
    cutting tools, 328 329, 330
    displacement, 331
    drives, 327, 327 328
    form measurement, 331
    implementation, 323 335
    inspection systems, 328, 329
    machining process variables, 332, 332
    mechanical structure, 324 327, 326
    metrology, 328, 329
    minimum undeformed chip thickness, 320,
320 321
    nanogrinding, 334, 335
    nanometrology, 330 332
    nomenclature, 335
    position measurement, 331
    practical nanometric machining, 333 335
    single point diamond turning, 333, 333
    surface generation, 318 319, 319
    surface integrity measurement, 331, 332
    surface texture measurement, 331
    temperature, cutting, 316 318, 318
    theories, 314 323
    tools, cutting, 328 329, 330
    ultraprecision machine tools, 323 328
    workpiece material properties, 322, 322 323
Nanometrology, 330 332

Nano properties, 341
Nanosecond pulse microfabri cation, 231 233,
233 234
Nanotech 500FG, 175
National Institute for Research in Inorganic Materials
(NIRIM),191
National Microsystems Packaging Centre (NMPQ, 364,
364 365
Nd:YAG lasers, 224 225, 228, 233
Negative strain hardening, 106
Negative x ray resists, 49
Neto, VE, 354
Network of Excellence in Multifunctional Microsystems,
365
Newton, Isaac, 189
New View series optical profiles, 331
NEXUS, 363, 365
Ni, Devor, Ehmann and, studies, 124
NIRIM, see National Institute for Research in Inorganic
Materials (NIRIM)
Nistor studies, 342
NMPC, see National Microsystems Packaging Centre
(NMPQ
Nonaxisymmetric aspheric mirrors, 177
Nonmechanical nanometric machining, 312
North West Development Agency, 364
Nucleation, 188, 201, 201 205
Numerical control (NQ jig grinding, 161
Nyquist frequency, 266

O
Ohmori and Nakagawa studies, 162
Ong and Venkatesh studies, 175
Optics, laser based micro and nanofabri cation,
227 230
Optimal wavelength, 51 52, 52
Optimum machining systems, 175
Orowan studies, 95
Oscillations, particle, 37
Overhang, 158
Oxychloride, 148

P
Packaging, commercialization issues, 363
Paraboloids, 168 169
Partial ductile mode grinding, 164 166, 165 166
Particle oscillations, 37
PAS, see Polyalkensulfone (PAS)
PDMS, see Polydimethylsiloxane (PDMS)
Pentium 4 microprocessor, 7
Performance index, 278
Performance studies, 210 211, 213 217, 214
Physical vapor deposition (PVD)
    CVD diamond technology, 188
    machining, 374
    nanocrystalline diamond, 340
Picosecond pulse microfabrication, 233 236, 235 240,
239 240
PID algorithms and controller, 327
Piezoelectric nanogrinding, 278 279, 279
Piezoelectric (PZT) actuators, 327
Piispanen studies, 92, 95 96, 107
Plasma characteristics, 61 62
Plasma enhanced CVD, 193
Plasma etching processes, 60 61
Plastic behavior,
    large strain fluid like flow, 101, 101 102
hard turning, 100
    Kececioglu's models, 102 104, 103 104
    Langford and Cohen's model, 96, 97 98, 98
    large plastic flow, 99
    metal cutting chip formation, 101, 101 102
    plastic behavior, large strain, 95 104, 96
    saw tooth chip formation, 100
    size effect, micromacbming, 95 104, 96
    Usui's model, 100, 100 101
    Walker and Shaw's model, 96 97, 98 100, 99
    Zhang and Bagchi's model, 104, 105 106
PLG, see Poly(lactide coglycolide) (PLG)
PMI, see Polymethacrylimide (PMI)
PMMA, see Polymethylmethacrylate (PMMA)
Poisson's ratio, 253, 255 256
Polanyi studies, 95
Polaroid X 70 instant camera, 180
Polishing time reduction, 164 166, 165 166
Polyalkensulfone (PAS), 49
Polyamide (PA), 74
Polydimethylsiloxane (PDMS)
    casting, 368 369
    microfabrication, 13
    microfluidic systems, 112
    molding, 369 371
    soft lithographic manufacturing, 376
Poly(lactide coglycolide) (PLG), 49
Polymethacrylimide (PMI), 49
Polymethylmethacrylate (PMMA)
    casting, 50
    commercial, 50
    deposited dose, 53
    high aspect ratio microlithography, 46 47
    LIGA process, 38
    mask materials, 42, 44
    nanoimprint lithography, 381
    optimal wavelength, 51 52
    resist requirements, 49
    single layer absorber fabrication, 45
    slanted and stepped microstructures, 54
    stress induced cracks, 50
    x ray lithography, 40
Polyoxymethylene (POM), 49, 74
Polysulfone (PSU), 74
Polytetrafluoroethylene (PTFE), 239
POM, see Polyoxymethylene (POM)
Porous narrogrinding tools, 291 292, 291 297
Position measurement, 331
Practical nanometric machining, 333 335
Prawer studies, 343
Precision grinding processes
    aspheric surface generation, 166 169, 167 170
    critical depth, cuts, 162, 163
    electrolytic in process dressing, 162 164, 164
    IC chip manufacturing, 158 161, 160 161
    jig grinding, 158 161, 160 161
    micro and nanogrinding, 160 169
    partial ductile mode grinding, 164 166, 165 166
    polishing time reduction, 164 166, 165 166
Precision micro and nanogrinding, see Micro and
nanogrinding
Precitech, 172, 174 175, 323
Pressure coefficients, 138 139, 139
Pressure sensors, 360
Pressure variation, 137, 137
Pretreatment, substrates, 196 197
Printing, 360
Procedures, diamond narrogrinding, 285 286, 286 287
Processes
    alignment, 45, 45 46
    basics, 38
    CVD diamond technology, 193 195, 200, 200
    deposited dose, 53, 53
    exposure, 51 52
    high aspect ratio microlithography, 46, 46 47, 48
    LIGA process, 38, 39, 40
    lithography steps, 40
    master micromold fabrication, 54 56, 55
    materials, masks, 42 44, 42 44
PMMA, 50 51
    resists, 47, 49 50, 49 51
    single layer absorber fabrication, 44 45
    slanted and stepped microstructures, 53 54, 54
    substrate, 45, 45 46
    x ray lithography, 40
    x ray masks, 40, 41, 42, 45, 45 46
Product manufacture, 363
Product market interface, 360 361, 361
Product Technology Roadmap (NEXUS), 365
Properties, diamond, 189, 189
PSU, see Polysulfone (PSU)
PTFE, see Polytetrafluoroethylene (PTFE)
Pulsed liquid impact theory, 250 252
Pulsed water drop micromachining
    alumina, 261, 261
    basics, 249 250, 273 274
    circumferential damage, 252, 252 253
    closed form solution model, 265 266
    design, water based machine tools, 264, 264
    dynamic stress intensity factor, 257 258
    experiment, 266 273
    finite element model, 265, 265
    lateral jetting, 253, 253
    machining thresholds, modeling, 252 253,
253 259
    magnesium fluoride, 261 262, 262
    material removal rates, 262, 263, 264
    modeling,252 253,253 259
    mode shapes, tetrahedral structures, 266 273
    pulsed liquid impact theory, 250 252
    quasi static stress intensity, 254 256, 256
    results, 260 262
    silicon, 260, 260
    simulation, impact machining, 258 259
    space frame analysis, 264 266
    tetrahedral structures, 266 273
    theories, 250 252
    threshold curves, 259, 259
    water drop impact, 252 253
Pyrex glass, 162, 177
PZT, see Piezoelectric (PZT) actuators

Q
Q switched lasers, 224
Quality, optical, 228, 228 229
Quantum corrals, 17
Quartz, 292 293, 293 294, 297 304, 299 305
Quasi static stress intensity, 254 256, 256

R
Radical depletion, 63, 72, 72
Radiofrequency interface (RFI) standards, 363
Radio frequency (RF) plasma enhanced CVD, 193 194
Raman analysis, 208 209
Rayleigh surface waves, see Pulsed water drop
micromachining
Reaction injection molding, 75
Reactive ion etching (RIE), see also Deep reactive ion
etching (DRIE)
    high aspect ratio microstructures, 71 72, 72
    inhibitor depletion, trenches, 63
    microfabrication, 6
    nanoimptint lithography, 379 380
    radical depletion, trenches, 63
    volume transport, 64, 66 67
Reflection, 72, 72
Refractory bonding systems, 297 302, 299 302
Resinoid bonded wheels, 169
Resinoid materials, 148
Resists, 47, 49 50, 49 50
RFI, see Radiofrequency interface (RFI) standards
RF plasma enhanced CVD, 193 194
RIE, see Reactive ion etching (RIE)
Robinson studies
    diamond nanogrinding, 277 309
    high aspect ratio microstructures, 33 57
    laser based micro and nanofabrication, 221 247
Robonano OiA, 323, 335
Rubber, 148
Ruckmann studies, 165
Rusell studies, 169
Rutherford Appleton Laboratory, 34

S
SAE steel, 88 89, 93 94
SAMIM, 378
SAMs, see Self assembled molecules (SAMs).
Sandia National Laboratory, 34, 56
Saw tooth chip formation, 100
Scanning electron microscopy (SEM)
    bias enhanced nucleation, 203
    dental burs, 351
    deposition, 208 209
    performance, diamond coated dental bur, 215
    time modulated CVD, 346
Scanning tunneling microscopy (STM), 331
Scattergood and Blake studies, 146
Scattergood studies, 146
Schroeter studies, 144
Schulz and Moriwaki studies, 171
SDOF, see Single degree of freedom (SDOF) curve fit
Sein studies, 187 218
Selection, grinding wheels, 152 153, 152 154, 155
Self assembled molecules (SAM[s), 23, 26
SEM, see Scanning electron microscopy (SEM)
SEMI, 363
Semiconductor manufacturing, 376
Sharda studies, 343
Shaw, Vyas and, studies, 100
Shaw, Walker and, studies, 105
Shaw studies, 87 109, 115
Shear angle prediction, 91 95, 91 95
Sheath region, 61 62
Shellac, 148
Shielding gas, 231 232, 232
Shimada studies, 314
Shockley, Heidenreich and, studies, 90
"The Significant Structure Theory," 102
Sib, Hartranft and, studies, 254
Sih studies, 258
Silicate, 148
Silicon, pulsed water drop micromachining, 260, 260
Silicon carbide, 149
Silicon germanium blend, 7
Silicon wafers, 1 2
Silva studies, 343 344
Si/Mo substrate, 197
Simulation, 258 259, see also Modeling
Single degree of freedom (SDOF) curve fit, 267
Single layer absorber fabrication, 44 45
Single point diamond turning, 333, 333
Single wall carbon nanotubes (SWCNTs), 27
Sinhoff, Konig and, studies, 166
Size effect, micromachining
    basics, v, 87 91, 88 91, 108 109
    fluid like flow, 101, 101 102
    hard turning, 100
    inhomogeneous strain, 90 91, 107 108, 108
    Kececioglu's models, 102 104, 103 104
    Langford and Cohen's model, 96, 97 98, 98
    large plastic flow, 99, 105 107
    metal cutting chip formation, 101, 101 102
    plastic behavior, large strain, 95 104, 96
    saw tooth chip formation, 100
    shear angle prediction, 91 95, 91 95
    size effects, 88 91, 88 91, 108 109
    Usui's model, 100, 100 101
    Walker and Shaw's model, 96 97, 98 100, 99
    Zhang and Bagchi's model, 104, 105 106
Slanted microstructures, 53 54, 54
Slicing operations, 159
Slotting operations, 159
Slow flow lasers, 224
Soft lithography
    future directions, 376, 377 378
    nanofabrication, 13, 13 17, 15 16
Software
    ANSYS, 265, 270
    CFX, 125 127, 130
    Me Scope, 268, 270 271
Soft x rays, I I
Source materials transport, 188
Space frame analysis, 264 266
Spencer studies, 192
SRS, see Synchrontron radiation sources (SRS)
Standardization, commercialization issues, 363
Stephenson studies, 313
Stepped microstructures, 53 54, 54
Stimulated emission, 223 224
STM, see Scanning tunneling microscopy (STM)
Stoichiometric silicon nitride (S'3N4), 42
Storch studies, 293
Straining, silicon lattice, 7
Stress analysis, 279, 281 284, 288 290, 288 291
Strontium fitanate, 8
Structure, grinding wheels, 151, 151
Substrates, 45, 45 47, 196 198
Subtraction phase, 4
Supply chain networks, 362, 362 363
Surface generation, nanometric machining, 318 319, 319
Surface grinding operations, 157
Surface integrity measurement, 331, 332
Surface melting stages, 232
Surface texture measurement, 331
Suzuki and Murakami studies, 177
Swain and Hagan studies, 256
Symmetry, 325
Synchrontron radiation<br>     basics, 35 37, 36
    brilliance and brightness, 38
    spectral characteristics, 37
Synchrontron radiation sources (SRS), 35
Synthesis, diamond, 189 191

T
Tabor, Bowden and, studies, 115
Tabor and Home, Doyle studies, 118
TADTOP, 70 71, 71
Tangential focus, 167
Taniguchi's Table, 144, 145
Taniguchi studies, 89
Tan studies, 169
Taylor dispersion, 112
Taylor studies, 95, 144
Technology advancements, 171 175, 171 177
Technology development, 192 193, 193
Temperature
    cutting, nanometric machining, 316 318, 318
    CVD diamond technology, 204 205, 204 206
Tennant, Smithson, 189
Testing, commercialization issues, 363
Tetra Form C ultraprecision grinding machine, 323
Tetrahedral desktop machine tool, 177, 178
Tetrahedral structures, 266 273
Teu studies, 343
The Fundamentals of Microfabrication, 34
Theories
    mechanical micromachining, 114 121
    nanometric machining, 314 323
    pulsed water drop micromachining, 250 252
Thermal loop minimization, 325
"The Significant Structure Theory," 102
Thomson studies, 350
Three axis ultraprecision grinding machines, 177
Three axis ultraprecision milling machine (UPM 3), 323,
326,328
Three dimensional substrates, 206 210
Threshold curves, 259, 259
Tilting, 68 69, 69
Time modulated CVD (TMCVD), 344 348, 344 349
Tip angles, 131, 132 133, 133
Ti:sapphire lasers, 225
Titanium (Ti), 42
TMCVD, see Time modulated CVD (TMCVD)
Tolfree studies, 33 57,359 365
Tools cutting,     nanometric machining, 328 329, 330
    mechanical micromachining, 122, 124 126, 125 126
    micromolding, 79 81, 81
Top down manufacturing, 312, 367
Topography mode, nanofabrication, 17
Toshiba, 172
Townsend, Field, Hand and, studies, 262
Toyoda Machine Works, 172, 177
Transport, source materials, 188
Trenches, 5 6, 63
Tungsten carbide, 155, 35 1, see also WC Co Turner studies, 35
Twelve blades, 133, 134
Two-stage rotors, 135 137, 135 137

U
UK NMPC proposal, 364, 364 365
Ultraprecision grinding binderless wheel, 177 178, 179 180
    development, 171 175,171 177
    free form optics, 180 181, 181
    Jackson's model, 177, 178
    machines, 171 175, 171 177
    tetrahedral desktop machine tool, 177, 178
Ultraprecision machine tools, 323 328
Ultrashort picosecond pulses, 239
UPM 3 (three axis ultraprecision milling machine), 323, 326,328
Usui's model, 100, 100 101

V
van der Waals forces, 19
Van Ligten, Venkatesh and, studies, 165
Vapor phase species generation, 188
Veeco Metrology Group, 22, 331
Venkatesh, Kapoor and, studies, 168
Venkatesh, Ong and, studies, 175 Venkatesh and
Van Ligten studies, 165
Venkatesh and Zhong studies, 165
Venkatesh studies, 143 181
Vitrified materials, 148
Vohra, Catledge and, studies, 342
Voice coil actuated mMTs, 125
Volume transport, 63 64, 64 67, 66 67
von Mises criterion, 88, 95
Vyas and Shaw studies, 100

W
Walker and Shaw's model, 96 97, 98 100, 99
Walker and Shaw studies, 105
Walker studies, 98
Walsh studies, 365
Wang studies, 204, 343
Water drop impact, 252 253
Water drop micromachining, see Pulsed water drop micromachining
WC Co CVD
    diamond technology, 207 210, 208 213
    substrate, 197 198, 198 199
Whitesides, Xia and, studies, 377
Workpiece material properties, 322, 322 323
Wu studies, 342

X
Xia and Whitesides studies, 377 X 70
instant camera, Polaroid, 180
X ray diffraction, 296 297, 297 298, 306
X ray lithographic microfabrication     basics, v, 34 35
    deposited dose, 53, 53
    exposure, 51 52
    future directions, 56 57
    high aspect ratio microlithography, 46, 46 47, 48
    LIGA process, 38, 39, 40
    lithography steps, 40
    master micromold fabrication, 54 56, 55
    materials, masks, 42 44, 42 44
    PMMA, 50 51
    process, 38 56
    resists, 47, 49 50, 49 51
    single layer absorber fabrication, 44 45
    slanted and stepped microstructures, 53 54, 54
    substrates, 45, 45 47
    synchrontron radiation, 35 38, 36
x ray lithography, 35, 40
x ray masks, 40, 41, 42, 45, 45 46
X ray lithography, 35, 40
X ray masks, 40, 41, 42, 45, 45 46,
see also Masks, materials

Y
Yang studies, 350
Young's modulus, 42, 253
Yusa studies, 343

Z
Zhang and Bagchi's model, 104, 105 106
Zhang and Bagchi studies, 104
Zhong, Venkatesh and, studies, 165
Ziatin, Merchant and, studies, 115 116, 140
Zygo Corporation, 331

ORDER A COPY TODAY
Rev 3/16/09   ©2009 Abrasives Mall